Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Mar Drugs ; 20(6)2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1964023

ABSTRACT

Coronavirus disease 2019, caused by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global pandemic that poses an unprecedented threat to the global economy and human health. Several potent inhibitors targeting SARS-CoV-2 have been published; however, most of them have failed in clinical trials. This study aimed to assess the therapeutic compounds among aldehyde derivatives from seaweeds as potential SARS-CoV-2 inhibitors using a computer simulation protocol. The absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties of the compounds were analyzed using a machine learning algorithm, and the docking simulation of these compounds to the 3C-like protease (Protein Data Bank (PDB) ID: 6LU7) was analyzed using a molecular docking protocol based on the CHARMm algorithm. These compounds exhibited good drug-like properties following the Lipinski and Veber rules. Among the marine aldehyde derivatives, 4-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, and 5-bromoprotocatechualdehyde were predicted to have good absorption and solubility levels and non-hepatotoxicity in the ADME/Tox prediction. 3-hydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde were predicted to be non-toxic in TOPKAT prediction. In addition, 3,4-dihydroxybenzaldehyde was predicted to exhibit interactions with the 3C-like protease, with binding energies of -71.9725 kcal/mol. The computational analyses indicated that 3,4-dihydroxybenzaldehyde could be regarded as potential a SARS-CoV-2 inhibitor.


Subject(s)
COVID-19 Drug Treatment , Seaweed , Aldehydes/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Computer Simulation , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2 , Seaweed/metabolism , Viral Nonstructural Proteins/chemistry
2.
Marine Drugs ; 20(6):399, 2022.
Article in English | MDPI | ID: covidwho-1894042

ABSTRACT

Coronavirus disease 2019, caused by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global pandemic that poses an unprecedented threat to the global economy and human health. Several potent inhibitors targeting SARS-CoV-2 have been published;however, most of them have failed in clinical trials. This study aimed to assess the therapeutic compounds among aldehyde derivatives from seaweeds as potential SARS-CoV-2 inhibitors using a computer simulation protocol. The absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties of the compounds were analyzed using a machine learning algorithm, and the docking simulation of these compounds to the 3C-like protease (Protein Data Bank (PDB) ID: 6LU7) was analyzed using a molecular docking protocol based on the CHARMm algorithm. These compounds exhibited good drug-like properties following the Lipinski and Veber rules. Among the marine aldehyde derivatives, 4-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, and 5-bromoprotocatechualdehyde were predicted to have good absorption and solubility levels and non-hepatotoxicity in the ADME/Tox prediction. 3-hydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde were predicted to be non-toxic in TOPKAT prediction. In addition, 3,4-dihydroxybenzaldehyde was predicted to exhibit interactions with the 3C-like protease, with binding energies of −71.9725 kcal/mol. The computational analyses indicated that 3,4-dihydroxybenzaldehyde could be regarded as potential a SARS-CoV-2 inhibitor.

SELECTION OF CITATIONS
SEARCH DETAIL